题目内容
已知f(x)=
| ||
| 2 |
| 1 |
| 2 |
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,且c=
| 3 |
| m |
| n |
分析:(Ⅰ)先根据两角和与差的正弦公式化简为y=Asin(wx+ρ)+b的形式,结合正弦函数的最值可确定函数f(x)的最小值,再由T=
可求出其最小正周期.
(Ⅱ)将C代入到函数f(x)中.令f(C)=0根据C的范围求出C的值,再由
与
共线得到关系式
=
,从而根据正弦定理可得到a,b的关系
=
,最后结合余弦定理得到3=a2+b2-ab,即可求出a,b的值.
| 2π |
| w |
(Ⅱ)将C代入到函数f(x)中.令f(C)=0根据C的范围求出C的值,再由
| m |
| n |
| 1 |
| 2 |
| sinA |
| sinB |
| a |
| b |
| 1 |
| 2 |
解答:解:(Ⅰ)f(x)=
sin2x-
-
=sin(2x-
)-1
则f(x)的最小值是-2,最小正周期是T=
=π.
(Ⅱ)f(C)=sin(2C-
)-1=0,则sin(2C-
)=1,
∵0<C<π,∴0<2C<2π,∴-
<2C-
<
π,
∴2C-
=
,C=
,
∵
=(1,sinA)与
=(2,sinB)共线
∴
=
,
由正弦定理得,
=
①
由余弦定理得,c2=a2+b2-2abcos
,即3=a2+b2-ab②
由①②解得a=1,b=2.
| ||
| 2 |
| 1+cos2x |
| 2 |
| 1 |
| 2 |
| π |
| 6 |
则f(x)的最小值是-2,最小正周期是T=
| 2π |
| 2 |
(Ⅱ)f(C)=sin(2C-
| π |
| 6 |
| π |
| 6 |
∵0<C<π,∴0<2C<2π,∴-
| π |
| 6 |
| π |
| 6 |
| 11 |
| 6 |
∴2C-
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
∵
| m |
| n |
∴
| 1 |
| 2 |
| sinA |
| sinB |
由正弦定理得,
| a |
| b |
| 1 |
| 2 |
由余弦定理得,c2=a2+b2-2abcos
| π |
| 3 |
由①②解得a=1,b=2.
点评:本题主要考查两角和与差的正弦公式、向量的共线问题、正弦定理与余弦定理的应用.三角函数与向量的综合题是高考的热点问题,要强化复习.
练习册系列答案
相关题目