题目内容
设p:f(x)=lnx+2x2+mx+1在(0,+∞)内单调递增,q:m≥-5,则p是q的( )
| A.充分不必要条件 | B.必要不充分条件 |
| C.充分必要条件 | D.既不充分也不必要条件 |
若f(x)=lnx+2x2+mx+1在(0,+∞)内单调递增,则f′(x)=
+4x+m≥0在(0,+∞)上恒成立
即m≥-(
+4x)在(0,+∞)上恒成立
∵-(
+4x)≤-2
=-4
∴m≥-4,∵{m|m≥-4}⊆{m|m≥-5}
∴p是q的充分不必要条件
故选A
| 1 |
| x |
即m≥-(
| 1 |
| x |
∵-(
| 1 |
| x |
|
∴m≥-4,∵{m|m≥-4}⊆{m|m≥-5}
∴p是q的充分不必要条件
故选A
练习册系列答案
相关题目
设P:f(x)=ln(2x)+
mx3-
x2+4x+1在[
,6]内单调递增,q:m≥
,则q是p的( )
| 1 |
| 3 |
| 3 |
| 2 |
| 1 |
| 6 |
| 5 |
| 9 |
| A、充分必要条件 |
| B、充分不必要条件 |
| C、必要不充分条件 |
| D、既不充分也不必要条件 |