题目内容
设a+b=
证明:a8+b8=
(12+12)[(a4)2+(b4)2]
≥
(1×a4+1×b4)2
=
(a4+b4)2
=
[
(12+12)(a4+b4)]2
=
×
{(12+12)[(a2)2+(b2)2]}
≥
(1×a2+1×b2)2=
(a2+b2)2
=
[
(12+12)(a2+b2)]2
=
×
(a+b)2=
.
∴原不等式成立.
练习册系列答案
相关题目
题目内容
设a+b=
证明:a8+b8=
(12+12)[(a4)2+(b4)2]
≥
(1×a4+1×b4)2
=
(a4+b4)2
=
[
(12+12)(a4+b4)]2
=
×
{(12+12)[(a2)2+(b2)2]}
≥
(1×a2+1×b2)2=
(a2+b2)2
=
[
(12+12)(a2+b2)]2
=
×
(a+b)2=
.
∴原不等式成立.