题目内容
在△ABC中角,A,B,C所对的边分别为a,b,c,向量
=(cos
,1),
=(-l,sin(A+B)),且
⊥
.
(Ⅰ)求角C的大小;
(Ⅱ)若
•
=
,且a+b=4,求c.
| m |
| C |
| 2 |
| n |
| m |
| n |
(Ⅰ)求角C的大小;
(Ⅱ)若
| CA |
| CB |
| 3 |
| 2 |
分析:(Ⅰ)由题意可得
•
=0,化简可得cos
(-1+2sin
)=0,可得
∈(0,
),有cos
>0,必有-1+2sin
=0,可得得sin
=
,可得C;(Ⅱ)由已知结合数量积的定义可得ab的值,由余弦定理可得c2=(a+b)2-3ab,代入计算可得c2,可得c值.
| m |
| n |
| C |
| 2 |
| C |
| 2 |
| C |
| 2 |
| π |
| 2 |
| C |
| 2 |
| C |
| 2 |
| C |
| 2 |
| 1 |
| 2 |
解答:解:(Ⅰ)由题意可得
•
=-cos
+sin(A+B)=0,
化简可得-cos
+sinC=-cos
+2sin
cos
=cos
(-1+2sin
)=0,
∵C∈(0,π),
∴
∈(0,
),
∴cos
>0,
∴-1+2sin
=0
解得sin
=
,
∴
=
,∴C=
(Ⅱ)∵
•
=abcosC=
ab=
,∴ab=3,
由余弦定理可得c2=a2+b2-2abcosC
=a2+b2-ab=(a+b)2-3ab
=42-3×3=7
∴c=
| m |
| n |
| C |
| 2 |
化简可得-cos
| C |
| 2 |
| C |
| 2 |
| C |
| 2 |
| C |
| 2 |
=cos
| C |
| 2 |
| C |
| 2 |
∵C∈(0,π),
∴
| C |
| 2 |
| π |
| 2 |
∴cos
| C |
| 2 |
∴-1+2sin
| C |
| 2 |
解得sin
| C |
| 2 |
| 1 |
| 2 |
∴
| C |
| 2 |
| π |
| 6 |
| π |
| 3 |
(Ⅱ)∵
| CA |
| CB |
| 1 |
| 2 |
| 3 |
| 2 |
由余弦定理可得c2=a2+b2-2abcosC
=a2+b2-ab=(a+b)2-3ab
=42-3×3=7
∴c=
| 7 |
点评:本题考查平面向量数量积的运算,涉及三角函数的运算和余弦定理的应用,属中档题.
练习册系列答案
相关题目