题目内容
3.已知函数f(x)=$\frac{{e}^{x}}{|x|}$,关于x的方程f2(x)-2af(x)+a-1=0(m∈R)有四个相异的实数根,则a的取值范围是($\frac{{e}^{2}-1}{2e-1}$,+∞).分析 将函数f(x)表示为分段函数形式,判断函数的单调性和极值,利用换元法将方程转化为一元二次方程,利用一元二次函数根与系数之间的关系进行求解即可.
解答 解:当x>0时,f(x)=$\frac{{e}^{x}}{x}$,函数的导数f′(x)=$\frac{{e}^{x}•x-{e}^{x}}{{x}^{2}}$=$\frac{{e}^{x}(x-1)}{{x}^{2}}$,
当x>1时,f′(x)>0,当0<x<1时,f′(x)<0,则当x=1时 函数取得极小值f(1)=e,
当x<0时,f(x)=-$\frac{{e}^{x}}{x}$,函数的导数f′(x)=-$\frac{{e}^{x}•x-{e}^{x}}{{x}^{2}}$=-$\frac{{e}^{x}(x-1)}{{x}^{2}}$,此时f′(x)>0恒成立,
此时函数为增函数,![]()
作出函数f(x)的图象如图:
设t=f(x),则t>e时,t=f(x)有3个根,
当t=e时,t=f(x)有2个根
当0<t<e时,t=f(x)有1个根,
当t≤0时,t=f(x)有0个根,
则f2(x)-2af(x)+a-1=0(m∈R)有四个相异的实数根,
等价为t2-2at+a-1=0(m∈R)有2个相异的实数根,
其中0<t<e,t>e,
设h(t)=t2-2at+a-1,
则$\left\{\begin{array}{l}{h(0)>0}\\{h(e)<0}\\{-\frac{-2a}{2}=a>0}\end{array}\right.$,即$\left\{\begin{array}{l}{a-1>0}\\{{e}^{2}-2ae+a-1<0}\\{a>0}\end{array}\right.$,即$\left\{\begin{array}{l}{a>1}\\{a>\frac{{e}^{2}-1}{2e-1}}\end{array}\right.$,
即a>$\frac{{e}^{2}-1}{2e-1}$,
故答案为:($\frac{{e}^{2}-1}{2e-1}$,+∞)
点评 本题主要考查函数与方程的应用,利用换元法转化为一元二次函数,利用数形结合以及根与系数之间的关系是解决本题的关键.综合性较强,有一定的难度.
| A. | 16 | B. | 32 | C. | 64 | D. | 128 |
命题q:若以原点为对称中心,坐标轴为对称轴的双曲线的一条渐近线与直线2x-y+1=0平行,则双曲线的离心率等于$\sqrt{5}$,下列命题真确的是( )
| A. | p∧q | B. | ¬p∨q | C. | p∧¬q | D. | ¬p∧¬q |
| A. | (1,3) | B. | (-3,-1) | C. | (1,5) | D. | (-5,-1) |
| A. | 140种 | B. | 150种 | C. | 220种 | D. | 230种 |
| A. | f(x)的最小值为4 | |
| B. | f(x)在(0,2)上单调递减,在(2,+∞)上单调递增 | |
| C. | f(x)的最大值为4 | |
| D. | f(x)在(0,2)上单调递增,在(2,+∞)上单调递减 |