题目内容

15.三棱锥P-ABC中,△ABC为等边三角形,PA=PB=PC=2,PA⊥PB,三棱锥P-ABC的外接球的表面积为12π.

分析 证明PA⊥PC,PB⊥PC,以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P-ABC外接球.算出长方体的对角线即为球直径,结合球的表面积公式,可算出三棱锥P-ABC外接球的表面积.

解答 解:∵三棱锥P-ABC中,△ABC为等边三角形,PA=PB=PC=2,
∴△PAB≌△PAC≌△PBC.
∵PA⊥PB,
∴PA⊥PC,PB⊥PC.
以PA、PB、PC为过同一顶点的三条棱,作长方体如图:
则长方体的外接球同时也是三棱锥P-ABC外接球.
∵长方体的对角线长为$\sqrt{4+4+4}=2\sqrt{3}$,
∴球直径为2$\sqrt{3}$,半径R=$\sqrt{3}$,
因此,三棱锥P-ABC外接球的表面积是4πR2=4π×$(\sqrt{3})^{2}$=12π.
故答案为:12π.

点评 本题考查了长方体对角线公式和球的表面积计算等知识,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网