题目内容

求值.

(1)cos24°cos36°-sin24°sin36°;

(2)cos80°cos35°+cos10°cos55°;

(3)sin100°sin(-160°)+cos200°(-280°);

(4)sin347°cos148°+sin77°cos58°.

答案:
解析:

  解:(1)原式=cos(24°+36°)=cos60°=

  (2)原式=cos80°cos35°+sin80°sin35°=cos(80°-35°)=cos45°=

  (3)原式=sin(180°-80°)sin(20°-180°)+cos(20°+180°)cos(80°-360°)

  =sin80°(-sin20°)+(-cos20°)cos80°

  =-sin80°sin20°-cos80°cos20°

  =-(cos80°cos20°+sin80°sin20°)

  =-cos(80°-20°)=-cos60°=-

  (4)原式=sin(-13°+360°)cos(180°-32°)+sin77°cos58°

  =sin(-13°)(-cos32°)+sin77°cos58°

  =-sin13°(-cos32°)+sin77°cos58°

  =cos77°cos32°+sin77°sin32°

  =cos(77°-32°)=cos45°=


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网