题目内容
求值.
(1)cos24°cos36°-sin24°sin36°;
(2)cos80°cos35°+cos10°cos55°;
(3)sin100°sin(-160°)+cos200°(-280°);
(4)sin347°cos148°+sin77°cos58°.
答案:
解析:
解析:
|
解:(1)原式=cos(24°+36°)=cos60°= (2)原式=cos80°cos35°+sin80°sin35°=cos(80°-35°)=cos45°= (3)原式=sin(180°-80°)sin(20°-180°)+cos(20°+180°)cos(80°-360°) =sin80°(-sin20°)+(-cos20°)cos80° =-sin80°sin20°-cos80°cos20° =-(cos80°cos20°+sin80°sin20°) =-cos(80°-20°)=-cos60°=- (4)原式=sin(-13°+360°)cos(180°-32°)+sin77°cos58° =sin(-13°)(-cos32°)+sin77°cos58° =-sin13°(-cos32°)+sin77°cos58° =cos77°cos32°+sin77°sin32° =cos(77°-32°)=cos45°= |
练习册系列答案
相关题目