题目内容
18.已知定义在R上函数f(x)的导函数为f'(x),且$f(x)+f'(x)=\frac{2x-1}{e^x}$,若f(0)=0,则函数f(x)的单调减区间为( )| A. | $({-∞,\frac{{3-\sqrt{5}}}{2}})$和$({\frac{{3+\sqrt{5}}}{2},+∞})$ | B. | $({\frac{{3-\sqrt{5}}}{2},\frac{{3+\sqrt{5}}}{2}})$ | ||
| C. | $({-∞,3-\sqrt{5}})$和 $({3+\sqrt{5},+∞})$ | D. | $({3-\sqrt{5},3+\sqrt{5}})$ |
分析 先构造函数设g(x)=exf(x),再求导,得到g′(x)=2x+1,根据f(0)=0,求出g(x),即可求出f(x),再根据导数和函数的单调性即可求出答案.
解答 解:由$f(x)+f'(x)=\frac{2x-1}{e^x}$,得ex(f(x)+f′(x))=2x-1,
设g(x)=exf(x),
∴g′(x)=ex(f(x)+f′(x))=2x-1,
可设g(x)=x2-x+c,
∵f(0)=0,
∴g(0)=0,
∴c=0,
∴g(x)=x2-x,
∴f(x)=$\frac{g(x)}{{e}^{x}}$=$\frac{{x}^{2}-x}{{e}^{x}}$,
∴f′(x)=$\frac{-{x}^{2}+3x-1}{{e}^{x}}$,
当f′(x)≤0时,即-x2+3x-1≤0,解得x≤$\frac{3-\sqrt{5}}{2}$或x≥$\frac{3+\sqrt{5}}{2}$,
故选:A
点评 本题考查了导数和函数的单调性的关系,关键时构造函数,属于中档题.
练习册系列答案
相关题目
9.设x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ 4x-y-2≤0\\ x≥0\\ y≥0\end{array}\right.$,则4x•2y的最大值为16.
4.函数f(x)=log2x-x+3的零点个数为( )
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |