题目内容

18.已知定义在R上函数f(x)的导函数为f'(x),且$f(x)+f'(x)=\frac{2x-1}{e^x}$,若f(0)=0,则函数f(x)的单调减区间为(  )
A.$({-∞,\frac{{3-\sqrt{5}}}{2}})$和$({\frac{{3+\sqrt{5}}}{2},+∞})$B.$({\frac{{3-\sqrt{5}}}{2},\frac{{3+\sqrt{5}}}{2}})$
C.$({-∞,3-\sqrt{5}})$和 $({3+\sqrt{5},+∞})$D.$({3-\sqrt{5},3+\sqrt{5}})$

分析 先构造函数设g(x)=exf(x),再求导,得到g′(x)=2x+1,根据f(0)=0,求出g(x),即可求出f(x),再根据导数和函数的单调性即可求出答案.

解答 解:由$f(x)+f'(x)=\frac{2x-1}{e^x}$,得ex(f(x)+f′(x))=2x-1,
设g(x)=exf(x),
∴g′(x)=ex(f(x)+f′(x))=2x-1,
可设g(x)=x2-x+c,
∵f(0)=0,
∴g(0)=0,
∴c=0,
∴g(x)=x2-x,
∴f(x)=$\frac{g(x)}{{e}^{x}}$=$\frac{{x}^{2}-x}{{e}^{x}}$,
∴f′(x)=$\frac{-{x}^{2}+3x-1}{{e}^{x}}$,
当f′(x)≤0时,即-x2+3x-1≤0,解得x≤$\frac{3-\sqrt{5}}{2}$或x≥$\frac{3+\sqrt{5}}{2}$,
故选:A

点评 本题考查了导数和函数的单调性的关系,关键时构造函数,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网