题目内容
求证:a2+b2+1≥ab+a+b.
分析:运用基本不等式可得a2+b2≥2ab,a2+1≥2a,b2+1≥2b,把以上三个式子相加,可得结论.
解答:证明:∵a2+b2≥2ab,a2+1≥2a,b2+1≥2b,
∴把以上三个式子相加得:2(a2+b2+1)≥2(ab+a+b)
∴a2+b2+1≥ab+a+b
∴把以上三个式子相加得:2(a2+b2+1)≥2(ab+a+b)
∴a2+b2+1≥ab+a+b
点评:本题考查不等式的证明,考查基本不等式的运用,属于中档题.
练习册系列答案
相关题目