题目内容

13.若${a_n}=\left\{{\begin{array}{l}{(4-\frac{2}{3}a)n-3,n≤6}\\{{a^{n-5}},n>6}\end{array}}\right.$,a∈N*,且数列{an}是递增数列,则a的值是(  )
A.4或5B.3或4C.3或2D.1或2

分析 由${a_n}=\left\{{\begin{array}{l}{(4-\frac{2}{3}a)n-3,n≤6}\\{{a^{n-5}},n>6}\end{array}}\right.$,a∈N*,且数列{an}是递增数列,可得$(4-\frac{2}{3}a)$×6-3<a2,$4-\frac{2}{3}a$>0,a∈N*,解出即可得出.

解答 解:∵${a_n}=\left\{{\begin{array}{l}{(4-\frac{2}{3}a)n-3,n≤6}\\{{a^{n-5}},n>6}\end{array}}\right.$,a∈N*,且数列{an}是递增数列,
∴$(4-\frac{2}{3}a)$×6-3<a2,$4-\frac{2}{3}a$>0,a∈N*
解得6>a>3,因此a=4或5.
故选:A.

点评 本题考查了数列的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网