题目内容
(1)已知sinx=(2)已知sinα+cosα=
(0<α<π),求cos2α的值.
(3)已知sin(
-α)sin(
+α)=
(0<α<
),求sin2α的值.
解析:(1)sin2(x-
)
=sin(2x-
)
=-sin(
-2x)
=-cos2x=2sin2x-1
=2(
)2-1=2-
.
(2)由sinα+cosα=![]()
得(sinα+cosα)2=
,
∴2sinαcosα=
.
又0<α<π,∴sinα>0,cosα<0.
∵(sinα-cosα)2=1-2sinαcosα
=1+
,
∴sinα-cosα=
.
∴cos2α=cos2α-sin2α
=(cosα+sinα)(cosα-sinα)
=-
×
=
.
(3)∵sin(
-α)
=sin[
-(
+α)]
=cos(
+α)
∴
=sin(
-α)sin(
+α)
=sin(
+α)cos(
+α)
=
sin(
+2α)=
cos2α.
∴cos2α=
.
∵0<α<
,∴0<2α<π.
∴sin2α=
.
练习册系列答案
相关题目