搜索
题目内容
已知直线
的参数方程为
(
为参数),曲线
的极坐标方程为
(1)求曲线
的普通方程;
(2)求直线
被曲线
截得的弦长.
试题答案
相关练习册答案
(1)
(2)
.
试题分析:(1)应用余弦的二倍角公式将曲线C的极坐标方程化为含
的式子,然后应用公式
即可求出曲线C的普通方程;(2)法一:利用直线的标准参数方程中参数的几何意义来求弦长,选将直线参数方程化为标准参数方程,然后代入曲线C的普通方程,得到关于参数t的一个一元二次方程,由韦达定理可求出
就是所求弦长;注意直线标准参数方程中参数的两个系数的平方各等于1;法二:将直线的参数方程化为普通方程,联立曲线C的普通方程,消元得到一个一元二次方程,再用韦达定理及弦长公式就可就出所求的弦长.
试题解析:(1)由曲线C:
,化成普通方程为:
①
(2)方法一:把直线参数方程化为标准参数方程为:
②
把②代入①得:
,设其两根为
,由韦达定理得:
从而弦长为|t
1
-t
2
|==
方法二:把直线
的参数方程化为普通方程为:
代入
得
.设直线
与曲线C交于
,则
;所以
.
练习册系列答案
一线名师寒假作业本系列答案
快乐寒假每日30分钟系列答案
名校名师寒假培优作业本系列答案
寒假作业合肥工业大学出版社系列答案
金东方文化创新中考系列答案
中考必备河南中考考点集训卷系列答案
考前提分天天练系列答案
快乐过寒假江苏人民出版社系列答案
寒假作业非常5加2白山出版社系列答案
快乐寒假甘肃少年儿童出版社系列答案
相关题目
在平面直角坐标系
中,以
为极点,
轴非负半轴为极轴建立坐标系,已知曲线
的极坐标方程为
,直线
的参数方程为:
(
为参数),两曲线相交于
两点. 求:
(1)写出曲线
的直角坐标方程和直线
的普通方程;
(2)若
求
的值.
(从22/23/24三道解答题中任选一道作答,作答时,请注明题号;若多做,则按首做题计入总分,满分10分. 请将答题的过程写在答题卷中指定的位置)(本小题满分10分)选修4—4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的
轴的正半轴重合.直线
的参数方程是
(
为参数),曲线
的极坐标方程为
.
(Ⅰ)求曲线
的直角坐标方程;
(Ⅱ)设直线
与曲线
相交于
,
两点,求
M,N
两点间的距离.
在极坐标系中,已知点
(1,
)和
,则
、
两点间的距离是
。
(选修4-3坐标系与参数方程)(本题满分10分)
求直线
(
)被曲线
所截的弦长.
点M的极坐标
(-5,
2
3
π)
化为直角坐标为( )
A.
(-
5
2
,-
5
3
2
)
B.
(
5
2
,-
5
3
2
)
C.
(-
5
2
,
5
3
2
)
D.
(
5
2
,
5
3
2
)
在极坐标系中,圆ρ=4sinθ的圆心到直线θ=
(ρ∈R)的距离是
.
极坐标系中,极点到直线
(其中
、
为常数)的距离是________.
在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的极坐标方程
,曲线C的参数方程为
为参数),求曲线C截直线l所得的弦长。
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案