题目内容
若方程a(b-c)x2+b(c-a)x+c(a-b)=0有等根,求证:
证明:∵方程有等根,
∴Δ=b2(c-a)2-4a(b-c)c(a-b)=0,
即[b(a+c)-2ac]2=0.
∴b(a+c)=2ac,
即
+
=
.
故
、
、
成等差数列.
练习册系列答案
相关题目
某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表
(1)画出销售额和利润额的散点图.
(2)若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程y=bx+a,其中b=
,a=
-b
.
(3)若获得利润是4.5时估计销售额是多少(百万)?
| 商店名称 | A | B | C | D | E |
| 销售额(x)/千万元 | 3 | 5 | 6 | 7 | 9 |
| 利润额(y)/百万元 | 2 | 3 | 3 | 4 | 5 |
(2)若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程y=bx+a,其中b=
| |||||||
|
. |
| y |
. |
| x |
(3)若获得利润是4.5时估计销售额是多少(百万)?