题目内容
【题目】已知
.
(1)若函数
的单调递减区间为
,求函数
的图像在点
处的切线方程;
(2)若不等式
恒成立,求实数
的取值范围.
【答案】(1)
;(2)
.
【解析】试题分析:⑴求出
的导函数,令导函数小于
得到不等式的解集,得到相应方程的两个根,将根代入求出
的值,得到函数
的解析式,求出
的导数在
的值即曲线的切线斜率,利用点斜式求出切线的方程
⑵求出不等式,分离出参数
,构造函数
,利用导数求出
的最大值,令
大于等于最大值,求出
的范围;
解析:(1)
,由题意,知
的解集是
,
即方程
的两根分别是
.
将
或
代入方程
,得
,
∴
,
,∴
,
∴
的图像在点
处的切线斜率
,
∴函数
的图像在点
处的切线方程为:
,即
;
(2)∵
恒成立,
即
对一切
恒成立,
整理可得
对一切
恒成立,
设
,则
,
令
,得
(舍),
当
时,
单调递增;当
时,
单调递减,
∴当
时,
取得最大值
,∴
.
故实数
的取值范围是
.
练习册系列答案
相关题目
【题目】某种新产品投放市场的100天中,前40天价格呈直线上升,而后60天其价格呈直线下降,现统计出其中4天的价格如下表:
时间 | 第4天 | 第32天 | 第60天 | 第90天 |
价格(千元) | 23 | 30 | 22 | 7 |
(1)写出价格
关于时间
的函数关系式;(
表示投放市场的第
天);
(2)销售量
与时间
的函数关系:
,则该产品投放市场第几天销售额最高?最高为多少千元?