题目内容
已知函数,则= .
在的边上随机取一点, 记和的面积分别为和,则的概率是 .
已知椭圆过点,离心率为
(I)求椭圆的方程
(II)设点是点关于原点的对称点,是椭圆上的动点(不同于),直线分别与直线交于点,问是否存在点使得和的面积相等,若存在,求出点的坐标,若不存在请说明理由
如图, 在等腰三角形中, 底边, , , 若
, 则=_____.
已知点,是函数 图象上的任意两点,且角的终边经过点,若时,的最小值为.
(1)求函数的解析式;
(2)求函数的单调递增区间;
(3)当时,不等式恒成立,求实数的取值范围.
已知,若,则的最小值为 .
如图长方体中,底面是正方形,是的中点,是棱上任意一点.
⑴求证:;
⑵如果,求的长.
过椭圆的左顶点A且斜率为的直线交椭圆于另一点,且点在轴上的射影恰为右焦点,若,则椭圆的离心率的取值范围是 .
已知椭圆E:,椭圆E的内接平行四边形的一组对边分别经过它的两个焦点(如图),则这个平行四边形面积的最大值是 .