题目内容
3.已知△ABC中,AB=AC=10,cosB=$\frac{3}{5}$,求底边BC及顶角A的正切值.分析 画出图形,结合图形,利用三角形的边角关系以及三角函数的恒等变换,即可求出答案.
解答 解:如图所示,![]()
△ABC中,AB=AC=10,cosB=$\frac{3}{5}$,
作AD⊥BC,垂足为D,
则AD平分∠BAC,BD=CD
∴BD=AB•cosB=10×$\frac{3}{5}$=6
∴BC=2BD=12;
又sin∠BAD=cosB=$\frac{3}{5}$
∴cos∠BAD=$\frac{4}{5}$,
∴tan∠BAD=$\frac{3}{4}$,
∴tan∠BAC=$\frac{2tan∠BAD}{1{-tan}^{2}∠BAD}$=$\frac{2×\frac{3}{4}}{1{-(\frac{3}{4})}^{2}}$=$\frac{24}{7}$;
故底边BC=12,顶角A的正切值为$\frac{24}{7}$.
点评 本题考查了利用三角形的边角关系以及三角函数的恒等变换求解计算的问题,是基础题目.
练习册系列答案
相关题目
18.设实数a∈(1,2),关于x的一元二次不等式x2-(a2+3a+2)x+3a(a2+2)<0的解为( )
| A. | (3a,a2+2) | B. | (a2+2,3a) | C. | (3,4) | D. | (3,6) |
8.下列关系式中,根式与分数指数幂互化正确的是( )
| A. | $\root{3}{a}$•$\sqrt{-a}$=-a${\;}^{\frac{5}{6}}$ | B. | x${\;}^{\frac{2}{4}}$=$\sqrt{x}$ | C. | ($\root{3}{{b}^{\frac{3}{2}}}$)${\;}^{\frac{3}{2}}$=b3 | D. | (a-b)${\;}^{-\frac{5}{2}}$=$\sqrt{(a-b)^{-5}}$ |
7.已知函数f(x)=|x-3|+2,g(x)=kx,若方程f(x)=g(x)有两个不相等实根,则实数k的范围( )
| A. | (0,$\frac{2}{3}$) | B. | ($\frac{2}{3}$,1) | C. | (1,$\frac{3}{2}$) | D. | ($\frac{3}{2}$,+∞) |
5.
已知抛物线C:y2=2px(p>0),O为坐标原点,F为其焦点,准线与x轴交点为E,P为抛物线上任意一点,则$\frac{|PF|}{|PE|}$( )
| A. | 有最小值$\frac{\sqrt{2}}{2}$ | B. | 有最小值1 | C. | 无最小值 | D. | 最小值与p有关 |