题目内容

6.已知圆x2+y2=r2在曲线|x|+|y|=4的内部(含边界),则半径r的范围是(0,2$\sqrt{2}$].

分析 画出图形,利用已知条件列出关系式,求解即可.

解答 解:如图,曲线C:|x|+|y|=4为正方形ABCD
∵圆x2+y2=r2在曲线C的内部(含边界).直线BC方程为:x-y=4,
|OM|=$\frac{4}{\sqrt{2}}$=$2\sqrt{2}$.
∴0<r≤|OM|=2$\sqrt{2}$.
故答案为:(0,2$\sqrt{2}$].

点评 本题考查圆的方程的应用,直线与圆的位置关系,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网