题目内容

已知向量a=(1-tanx,1),b=(1+sin2x+cos2x,-3),记f(x)=a·b.

(1)求f(x)的定义域,值域及最小正周期;

(2)若f()-f(+)=,其中α∈(0,),求α.

解:(1)f(x)=(1-tanx)(1+sin2x+cos2x)-3=·(2cos2x+2sinxcosx)-3=2(cos2x-sin2x)-3=2cos2x-3.                                                                                               ?

∴定义域为{x|xkπ+,kZ}.                                                                         ?

值域为(-5,-1].                                                                                                       ?

最小正周期T=π.                                                                                                     ?

(2)f()-f(+)=2cosα-2cos(α+)=2(cosα+sinα)=2Equation.3sin(α+)=.      ?

∴sin(α+)=.?

α∈(0,),∴α+∈(,).?

α+=α+=.?

α=α=.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网