搜索
题目内容
直线y=1与曲线y=x
2
-|x|+a有四个交点,则a的取值范围是( )。
试题答案
相关练习册答案
练习册系列答案
1加1阅读好卷系列答案
专项复习训练系列答案
初中语文教与学阅读系列答案
阅读快车系列答案
完形填空与阅读理解周秘计划系列答案
英语阅读理解150篇系列答案
奔腾英语系列答案
标准阅读系列答案
53English系列答案
考纲强化阅读系列答案
相关题目
直线y=1与曲线y=x
2
-|x|+a有四个交点,则a的取值范围是
.
直线y=1与曲线y=-x
2
+2所围成图形的面积为
.
如图,直线y=1与曲线y=-x
2
+2所围图形的面积是
已知以下四个命题:
①如果x
1
,x
2
是一元二次方程ax
2
+bx+c=0的两个实根,且x
1
<x
2
,那么不等式ax
2
+bx+c<0的解集为
{x|x
1
<x<x
2
};
②“若m>2,则x
2
-2x+m>0的解集是实数集R”的逆否命题;
③若
x-1
x-2
≤0,则(x-1)(x-2)≤0.
④直线y=1与曲线y=x
2
-|x|+a有四个交点,则a的取值范围是
(1,
5
4
)
其中为真命题的是
(填上你认为正确的序号)
直线y=1与曲线y=x
2
-|x|+a有四个交点,则实数a的取值范围是( )
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案