题目内容
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n),其中为正实数.
(Ⅰ)用表示xn+1;
(Ⅱ)若a1=4,记an=lg,证明数列{}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
(本小题满分14分)已知函数,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n ÎN *),x1=4.(Ⅰ)用表示xn+1;(Ⅱ)记an=lg,证明数列{an}成等比数列,并求数列{xn}的通项公式;(Ⅲ)若bn=xn-2,试比较与的大小.
(本小题满分14分)已知函数,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n Î N *),x1=4.
(Ⅱ)记an=lg,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若bn=xn-2,试比较与的大小.