ÌâÄ¿ÄÚÈÝ

19£®ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÒÑÖªa1=1£¬$\frac{{2S}_{n}}{n}$=an+1-$\frac{1}{3}$n2-n-$\frac{2}{3}$£¬n¡ÊN*£®
£¨I£©ÇóÖ¤£º{$\frac{{a}_{n}}{n}$}ΪµÈ²îÊýÁУ¬²¢ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÊýÁÐ{cn}µÄǰnÏîºÍΪTn£¬cn=$\frac{\sqrt{{a}_{n}}-2}{{2}^{n-1}}$£¬ÊÇ·ñ´æÔÚʵÊý¦Ë£¬¶ÔÓÚÈÎÒân¡ÊN*£®Ê¹Tn£¾£¨-1£©n¦Ëºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö¦Ë·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨I£©ÀûÓõÝÍÆ¹ØÏµÓëµÈ²îÊýÁе͍Òå¼´¿ÉÖ¤Ã÷£»
£¨II£©ÀûÓá°´íλÏà¼õ·¨¡±ÓëµÈ±ÈÊýÁеÄǰnÏîºÍ¹«Ê½¼´¿ÉµÃ³ö£®

½â´ð £¨I£©Ö¤Ã÷£º¡ß$\frac{{2S}_{n}}{n}$=an+1-$\frac{1}{3}$n2-n-$\frac{2}{3}$£¬n¡ÊN*£¬¼´2Sn=nan+1-$\frac{1}{3}{n}^{3}$-n2-$\frac{2}{3}n$£¬
µ±n¡Ý2ʱ£¬2Sn-1=£¨n-1£©an-$\frac{1}{3}£¨n-1£©^{3}$-£¨n-1£©2-$\frac{2}{3}$£¨n-1£©£¬
¿ÉµÃ£º2an=nan+1-£¨n-1£©an-n£¨n+1£©£¬
»¯Îª$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{n}$=1£¬
¡à{$\frac{{a}_{n}}{n}$}ΪµÈ²îÊýÁУ¬Ê×ÏîΪ1£¬¹«²îΪ1£¬
¿ÉµÃ$\frac{{a}_{n}}{n}$=1+£¨n-1£©=n£¬½âµÃan=n2£®
£¨II£©½â£ºcn=$\frac{\sqrt{{a}_{n}}-2}{{2}^{n-1}}$=$\frac{n-2}{{2}^{n-1}}$£¬
¡àÊýÁÐ{cn}µÄǰnÏîºÍΪTn=-1+0+$\frac{1}{{2}^{2}}$+$\frac{2}{{2}^{3}}$+¡­+$\frac{n-2}{{2}^{n-1}}$£¬
$\frac{1}{2}{T}_{n}$=$-\frac{1}{2}$+0+$\frac{1}{{2}^{3}}$+¡­+$\frac{n-3}{{2}^{n-1}}$+$\frac{n-2}{{2}^{n}}$£¬
¡à$\frac{1}{2}{T}_{n}$=-1+$\frac{1}{2}+\frac{1}{{2}^{2}}$+¡­+$\frac{1}{{2}^{n-1}}$-$\frac{n-2}{{2}^{n}}$=-2+$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-$\frac{n-2}{{2}^{n}}$=-$\frac{n}{{2}^{n}}$£¬
¡àTn=-$\frac{n}{{2}^{n-1}}$£®
¼ÙÉè´æÔÚʵÊý¦Ë£¬¶ÔÓÚÈÎÒân¡ÊN*£®Ê¹Tn£¾£¨-1£©n¦Ëºã³ÉÁ¢£¬
Ôò-$\frac{n}{{2}^{n-1}}$£¾£¨-1£©n¦Ë£¬
nΪżÊýʱ£¬¦Ë£¼-$\frac{n}{{2}^{n-1}}$£®
nÎªÆæÊýʱ£¬$¦Ë£¾\frac{n}{{2}^{n-1}}$£¬
Òò´Ë²»³ÉÁ¢£¬¼´²»´æÔÚʵÊý¦Ë£¬¶ÔÓÚÈÎÒân¡ÊN*£®Ê¹Tn£¾£¨-1£©n¦Ëºã³ÉÁ¢£®

µãÆÀ ±¾Ì⿼²éÁ˵ÝÍÆ¹ØÏµ¡¢µÈ²îÊýÁе͍Òå¼°ÆäͨÏʽ¡¢¡°´íλÏà¼õ·¨¡±ÓëµÈ±ÈÊýÁеÄǰnÏîºÍ¹«Ê½¡¢·ÖÀàÌÖÂÛ·½·¨¡¢²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø