题目内容
定义在R上函数f(x)满足f(0)=0,f(x)+f(1-x)=1,且f(
)=
f(x)当0≤x1<x2≤1时,f(x1)≤f(x2),则f(
)=( )
| x |
| 5 |
| 1 |
| 2 |
| 1 |
| 2011 |
A.
| B.
| C.
| D.
|
∵f(x)+f(1-x)=1
令x=1得的f(1)=1,x=
得f(
)=
,
∵f(
)=
f(x)得,
f(
)=
f(1)=
,f(
)=
f(
)=
,f(
)=
f(
)=
,f(
)=
f(
)=
,f(
)=
f(
)=
.
由f(
)=
f(x)得
f(
)=
f(
)=
,f(
)=
f(
)=
,f(
)=
f(
)=
,f(
)=
f(
)=
,
∵0≤x1<x2≤1时,f(x1)≤f(x2),
由f(
)≤f(
)≤f(
)及f(
)=f(
)=
得f(
)=
.
故选C.
令x=1得的f(1)=1,x=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∵f(
| x |
| 5 |
| 1 |
| 2 |
f(
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 25 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 4 |
| 1 |
| 125 |
| 1 |
| 2 |
| 1 |
| 25 |
| 1 |
| 8 |
| 1 |
| 625 |
| 1 |
| 2 |
| 1 |
| 125 |
| 1 |
| 16 |
| 1 |
| 3125 |
| 1 |
| 2 |
| 1 |
| 625 |
| 1 |
| 32 |
由f(
| x |
| 5 |
| 1 |
| 2 |
f(
| 1 |
| 10 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 50 |
| 1 |
| 2 |
| 1 |
| 10 |
| 1 |
| 8 |
| 1 |
| 250 |
| 1 |
| 2 |
| 1 |
| 50 |
| 1 |
| 16 |
| 1 |
| 1250 |
| 1 |
| 2 |
| 1 |
| 250 |
| 1 |
| 32 |
∵0≤x1<x2≤1时,f(x1)≤f(x2),
由f(
| 1 |
| 3125 |
| 1 |
| 2011 |
| 1 |
| 1250 |
| 1 |
| 3125 |
| 1 |
| 1250 |
| 1 |
| 32 |
| 1 |
| 2011 |
| 1 |
| 32 |
故选C.
练习册系列答案
相关题目