题目内容
定义在R上函数f(x)满足f(0)=0,f(x)+f(1-x)=1,且f(
)=
f(x)当0≤x1<x2≤1时,f(x1)≤f(x2),则f(
)=( )
| x |
| 5 |
| 1 |
| 2 |
| 1 |
| 2011 |
分析:由f(x)+f(1-x)=1利用赋值可得得的f(1)=1,f(
)=
,由f(
)=
f(x)得,
f(
)=
f(1),f(
)=
f(
),f(
)=
f(
),…可得f(
)=
f(
)=
.
再由f(
)=
f(x)得f(
)=
f(
)=
,f(
)=
f(
)=
,…可得f(
)=
f(
)=
由0≤x1<x2≤1时,f(x1)≤f(x2),及f(
)≤f(
)≤f(
),f(
)=f(
)=
可求f(
)
| 1 |
| 2 |
| 1 |
| 2 |
| x |
| 5 |
| 1 |
| 2 |
f(
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 25 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 125 |
| 1 |
| 2 |
| 1 |
| 25 |
| 1 |
| 3125 |
| 1 |
| 2 |
| 1 |
| 625 |
| 1 |
| 32 |
再由f(
| x |
| 5 |
| 1 |
| 2 |
| 1 |
| 10 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 50 |
| 1 |
| 2 |
| 1 |
| 10 |
| 1 |
| 8 |
| 1 |
| 1250 |
| 1 |
| 2 |
| 1 |
| 250 |
| 1 |
| 32 |
由0≤x1<x2≤1时,f(x1)≤f(x2),及f(
| 1 |
| 3125 |
| 1 |
| 2011 |
| 1 |
| 1250 |
| 1 |
| 3125 |
| 1 |
| 1250 |
| 1 |
| 32 |
可求f(
| 1 |
| 2011 |
解答:解:∵f(x)+f(1-x)=1
令x=1得的f(1)=1,x=
得f(
)=
,
∵f(
)=
f(x)得,
f(
)=
f(1)=
,f(
)=
f(
)=
,f(
)=
f(
)=
,f(
)=
f(
)=
,f(
)=
f(
)=
.
由f(
)=
f(x)得
f(
)=
f(
)=
,f(
)=
f(
)=
,f(
)=
f(
)=
,f(
)=
f(
)=
,
∵0≤x1<x2≤1时,f(x1)≤f(x2),
由f(
)≤f(
)≤f(
)及f(
)=f(
)=
得f(
)=
.
故选C.
令x=1得的f(1)=1,x=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∵f(
| x |
| 5 |
| 1 |
| 2 |
f(
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 25 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 4 |
| 1 |
| 125 |
| 1 |
| 2 |
| 1 |
| 25 |
| 1 |
| 8 |
| 1 |
| 625 |
| 1 |
| 2 |
| 1 |
| 125 |
| 1 |
| 16 |
| 1 |
| 3125 |
| 1 |
| 2 |
| 1 |
| 625 |
| 1 |
| 32 |
由f(
| x |
| 5 |
| 1 |
| 2 |
f(
| 1 |
| 10 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 50 |
| 1 |
| 2 |
| 1 |
| 10 |
| 1 |
| 8 |
| 1 |
| 250 |
| 1 |
| 2 |
| 1 |
| 50 |
| 1 |
| 16 |
| 1 |
| 1250 |
| 1 |
| 2 |
| 1 |
| 250 |
| 1 |
| 32 |
∵0≤x1<x2≤1时,f(x1)≤f(x2),
由f(
| 1 |
| 3125 |
| 1 |
| 2011 |
| 1 |
| 1250 |
| 1 |
| 3125 |
| 1 |
| 1250 |
| 1 |
| 32 |
| 1 |
| 2011 |
| 1 |
| 32 |
故选C.
点评:本题主要考查了在抽象函数中利用赋值法求解函数值的应用,解决问题的关键是通过赋值得到f(
)=f(
)=
及两边夹求解出函数的值,要主要此方法的应用.
| 1 |
| 3125 |
| 1 |
| 1250 |
| 1 |
| 32 |
练习册系列答案
相关题目