题目内容

15.如图:已知,在△OAB中,点A是BC的中点,点D是将向量$\overrightarrow{OB}$分为2:1的一个分点,DC和OA交于点E,则AO与OE的比值是(  )
A.2B.$\frac{5}{4}$C.$\frac{3}{2}$D.$\frac{6}{5}$

分析 根据条件可得$\overrightarrow{OE}=\frac{λ}{2}(\overrightarrow{OB}+\overrightarrow{OC})$,而$\overrightarrow{OB}=\frac{3}{2}\overrightarrow{OD}$,带入上式便可得出$\overrightarrow{OE}=\frac{3λ}{4}\overrightarrow{OD}+\frac{λ}{2}\overrightarrow{OC}$,这样由C,E,D三点共线便可得到$\frac{3λ}{4}+\frac{λ}{2}=1$,从而可求出λ的值,进而便可得出AO与OE的比值.

解答 解:∵O,E,A三点共线,且A是BC的中点;
∴设$\overrightarrow{OE}=λ\overrightarrow{OA}=\frac{λ}{2}(\overrightarrow{OB}+\overrightarrow{OC})$;
又$\overrightarrow{OB}=\frac{3}{2}\overrightarrow{OD}$;
∴$\overrightarrow{OE}=\frac{3λ}{4}\overrightarrow{OD}+\frac{λ}{2}\overrightarrow{OC}$;
∵C,E,D三点共线;
∴$\frac{3λ}{4}+\frac{λ}{2}=1$;
解得$λ=\frac{4}{5}$;
∴$\overrightarrow{OE}=\frac{4}{5}\overrightarrow{OA}$;
∴$\frac{AO}{OE}=\frac{5}{4}$.
故选:B.

点评 考查共线向量基本定理,向量加法的平行四边形法则,以及向量数乘的几何意义,向量的数乘运算,知道当C,E,D三点共线时,有$\overrightarrow{OE}=x\overrightarrow{OD}+y\overrightarrow{OC}$且x+y=1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网