题目内容

9.△ABC的内角A、B、C的对边分别为a、b、c,已知2a=$\sqrt{3}$csinA-acosC.
(1)求C;
(2)若c=$\sqrt{3}$,求△ABC的面积S的最大值.

分析 (1)由正弦定理,三角函数恒等变换的应用化简已知等式可得sin(C-$\frac{π}{6}$)=1,结合C的范围,可得C的值.
(2)由余弦定理,基本不等式可求ab≤1,进而利用三角形面积公式可求△ABC面积的最大值.

解答 (本题满分为12分)
解:(1)∵2a=$\sqrt{3}$csinA-acosC,
∴由正弦定理可得:2sinA=$\sqrt{3}$sinCsinA-sinAcosC,…2分
∵sinA≠0,
∴可得:2=$\sqrt{3}$sinC-cosC,解得:sin(C-$\frac{π}{6}$)=1,
∵C∈(0,π),可得:C-$\frac{π}{6}$∈(-$\frac{π}{6}$,$\frac{5π}{6}$),
∴C-$\frac{π}{6}$=$\frac{π}{2}$,可得:C=$\frac{2π}{3}$.…6分
(2)∵由(1)可得:cosC=-$\frac{1}{2}$,
∴由余弦定理,基本不等式可得:3=b2+a2+ab≥3ab,即:ab≤1,(当且仅当b=a时取等号)…8分
∴S△ABC=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab≤$\frac{\sqrt{3}}{4}$,可得△ABC面积的最大值为$\frac{\sqrt{3}}{4}$.…12分

点评 本题主要考查了正弦定理,两角和的正弦函数公式,余弦定理,基本不等式,三角形面积公式在解三角形中的综合应用,考查了转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网