题目内容
sin20°•sin40°•sin60°•sin80°的值为( )
A、
| ||
B、-
| ||
C、
| ||
D、-
|
分析:把所求的式子前两项结合,利用积化和差的公式化简后,把sin80°利用乘法分配律乘到括号里,再利用积化和差公式化简,利用诱导公式及合并后,再利用特殊角的三角函数值即可求出值.
解答:解:sin20°•sin40°•sin60°•sin80°
=
[cos(20°-40°)-cos(20°+40°)]sin80°sin60°
=
(cos20°sin80°-cos60°sin80°)sin60°
=
{
[sin(20°+80°)+sin(80°-20°)]-
sin80°}sin60°
=
{
[sin100°+sin60°]-
sin80°}sin60°
=
{
sin80°+
sin60°-
sin80°}sin60°
=
sin260°
=
.
故选C
=
| 1 |
| 2 |
=
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 4 |
=
| 3 |
| 16 |
故选C
点评:此题考查学生灵活运用积化和差公式及诱导公式化简求值,是一道中档题.
练习册系列答案
相关题目