题目内容

6.在△ABC中,角A、B、C的对边分别为a、b、c(a≥b),sin($\frac{π}{3}-A$)=sinB,asinC=$\sqrt{3}$sinA,则a+b的最大值为2.

分析 a≥b,sin($\frac{π}{3}-A$)=sinB,可得$\frac{π}{3}$-A=B,即A+B=$\frac{π}{3}$,C=$\frac{2π}{3}$.由asinC=$\sqrt{3}$sinA,可得c=$\sqrt{3}$.利用正弦定理可得a+b=2(sinA+sinB)=2sinA+2sin$(\frac{π}{3}-A)$=2sin$(A+\frac{π}{3})$,由于A∈$[\frac{π}{6},\frac{π}{3})$,可得sin(A+$\frac{π}{3}$)∈($\frac{\sqrt{3}}{2}$,1].即可得出.

解答 解:在△ABC中,∵a≥b,sin($\frac{π}{3}-A$)=sinB,
∴$\frac{π}{3}$-A=B,$\frac{π}{3}$-A=π-B,(舍去).
即A+B=$\frac{π}{3}$,∴C=$\frac{2π}{3}$.
∵asinC=$\sqrt{3}$sinA,∴ac=$\sqrt{3}a$,因此c=$\sqrt{3}$.
∴$\frac{a}{sinA}=\frac{b}{sinB}$=$\frac{\sqrt{3}}{sin\frac{2π}{3}}$=2,
∴a+b=2(sinA+sinB)=2sinA+2sin$(\frac{π}{3}-A)$
=2sinA+2($\frac{\sqrt{3}}{2}$cosA-$\frac{1}{2}$sinA)
=sinA+$\sqrt{3}$cosA
=2sin$(A+\frac{π}{3})$,
∵A∈$[\frac{π}{6},\frac{π}{3})$,∴sin(A+$\frac{π}{3}$)∈($\frac{\sqrt{3}}{2}$,1].
∴a+b∈($\sqrt{3}$,2].
故答案为:2.

点评 本题考查了正弦定理、和差公式、三角函数函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网