题目内容

已知△ABC的三个内角为A,B,C,向量
m
=(sin(A+C),1-cosB)
与向量
n
=(2,0)
夹角的余弦值为
1
2
,则角B为
3
3
分析:利用两个向量数量积公式可得
m
 •
n
=2sinB,再利用由
m
n
=2sin
B
2
,由此可得 2sinB=2sin
B
2
,求出
cos
B
2
 的值,即可得到
B
2
 的值,进而得到B的值.
解答:解:∵△ABC的三个内角为A,B,C,向量
m
=(sin(A+C),1-cosB)
与向量
n
=(2,0)
夹角的余弦值为
1
2

m
 •
n
=(sin(A+C),1-cosB)•(2,0)=2sin(A+C)=2sinB,
再由
m
n
=|
m
|•|
n
|
 cos<
m
 , 
n
>=
2-2cosB
×2×
1
2
=2sin
B
2

∴2sinB=2sin
B
2

∴cos
B
2
=
1
2

B
2
=
π
3
,B=
3

故答案为
3
点评:本题主要考查两个向量的数量积的定义,两个向量数量积公式的应用,根据三角函数的值求角,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网