题目内容
12.在△ABC中,已知A=$\frac{π}{6}$,a=$\frac{{4\sqrt{3}}}{3}$,b=4,则角B=$\frac{π}{3}$或$\frac{2π}{3}$.分析 利用正弦定理即可得出.
解答 解:由正弦定理可得:$\frac{a}{sinA}=\frac{b}{sinB}$,
∴$\frac{\frac{4\sqrt{3}}{3}}{sin\frac{π}{6}}$=$\frac{4}{sinB}$,化为sinB=$\frac{\sqrt{3}}{2}$,
∵B∈(0,π),b>a,
∴B=$\frac{π}{3}$或$\frac{2π}{3}$.
故答案为:$\frac{π}{3}$或$\frac{2π}{3}$.
点评 本题考查了正弦定理的应用,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
19.已知函数f(x+2)的定义域为[-2,2],则函数y=f(x-1)-f(x+1)的定义域( )
| A. | [-1,1] | B. | [-2,2] | C. | [1,3] | D. | [-1,5] |
20.“a=2,b=$\sqrt{2}$”为“曲线$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a、b∈R,ab≠0)经过点($\sqrt{2}$,1)的”( )
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
7.若等比数列{an}的前项和为Sn,且$\frac{{s}_{10}}{{s}_{20}}$=$\frac{2}{3}$,则$\frac{{s}_{20}}{{s}_{40}}$=( )
| A. | $\frac{2}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{4}{7}$ | D. | $\frac{3}{4}$ |
17.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.
(1)请画出上表数据的散点图;
(2)产品的产量与相应的生产能耗之间的关系是否具有线性相关性?若具有,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\hat y$=bx+a;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤. 试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
计算第(2)(3)问时可能会用到的参考信息:3×2.5+4×3+5×4+6×4.5=66.5参考公式:回归直线方程:$\widehaty=\widehatbx+\widehata$
线性回归方程中a,b的估计值$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\widehat{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{(\overline x)}^2}}}}$
参考公式:其中,a=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$ $\hat a=\bar y-b\bar x$.
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | 4 | 4.5 |
(2)产品的产量与相应的生产能耗之间的关系是否具有线性相关性?若具有,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\hat y$=bx+a;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤. 试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
计算第(2)(3)问时可能会用到的参考信息:3×2.5+4×3+5×4+6×4.5=66.5参考公式:回归直线方程:$\widehaty=\widehatbx+\widehata$
线性回归方程中a,b的估计值$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\widehat{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{(\overline x)}^2}}}}$
参考公式:其中,a=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$ $\hat a=\bar y-b\bar x$.