题目内容

已知向量
OP
=( 2cos(
π
2
+x) , -1 )
OQ
=( -sin(
π
2
-x) , cos2x )
,定义f(x)=
OP
OQ

(1)求函数f(x)的表达式,并求其单调区间;
(2)在锐角△ABC中,角A、B、C对边分别为a、b、c,且f(A)=1,bc=8,求△ABC的面积.
考点:两角和与差的正弦函数,平面向量数量积的运算
专题:三角函数的图像与性质
分析:(1)通过向量的数量积以及两角和与差的三角函数,化简函数为一个角的一个三角函数的形式,利用正弦函数的单调性求其单调区间;
(2)通过f(A)=1,求出A的值,然后结合bc=8,即可求△ABC的面积.
解答: 解:(1)f(x)=
OP
OQ
=2cos(
π
2
+x)(-sin(
π
2
-x)-cos2x
=2sinxcosx-cos2x=
2
sin(2x-
π
4
)

f(x)=
2
sin(2x-
π
4
)

-
π
2
+2kπ≤2x-
π
4
π
2
+2kπ
-
π
8
+kπ≤x≤
8
+kπ

f(x)的递增区间为[ -
π
8
+kπ , 
8
+kπ ]k∈R

π
2
+2kπ≤2x-
π
4
2
+2kπ
8
+kπ≤x≤
8
+kπ

f(x)的递减区间为
8
+kπ , 
8
+kπ ]k∈R

(2)由f(A)=1⇒
2
sin(2A-
π
4
)=1
sin(2A-
π
4
)=
2
2

0<A<
π
2
2A-
π
4
∈(-
π
4
4
)
所以2A-
π
4
=
π
4
⇒A=
π
4

S=
1
2
bcsinA=
1
2
×8×sin
π
4
=2
2
点评:本题考查两角和与差的三角函数,正弦函数的单调性,三角函数的化简求值,三角形的面积的求法,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网