题目内容
(1)解关于x的不等式
+1<0;
(2)记(1)中不等式的解集为A,函数g(x)=lg[(x-a-1)(2a-x)],(a<1)的定义域为B.若B⊆A,求实数a的取值范围.
| x+3 |
| x-5 |
(2)记(1)中不等式的解集为A,函数g(x)=lg[(x-a-1)(2a-x)],(a<1)的定义域为B.若B⊆A,求实数a的取值范围.
(1)由不等式
+1<0,化为
<0?(x-1)(x-5)<0,
解得1<x<5,因此原不等式的解集为{x|1<x<5};
(2)要使函数g(x)=lg[(x-a-1)(2a-x)],(a<1)有意义,则(x-a-1)(2a-x)>0,即(x-a-1)(x-2a)<0,
∵a<1,∴a+1>2a.
∴上述不等式的解集为{x|2a<x<a+1}.
∴B=(2a,a+1).
∵B⊆A,∴
,解得
≤a<1.
故当B⊆A,实数a的取值范围是[
,1).
| x+3 |
| x-5 |
| 2x-2 |
| x-5 |
解得1<x<5,因此原不等式的解集为{x|1<x<5};
(2)要使函数g(x)=lg[(x-a-1)(2a-x)],(a<1)有意义,则(x-a-1)(2a-x)>0,即(x-a-1)(x-2a)<0,
∵a<1,∴a+1>2a.
∴上述不等式的解集为{x|2a<x<a+1}.
∴B=(2a,a+1).
∵B⊆A,∴
|
| 1 |
| 2 |
故当B⊆A,实数a的取值范围是[
| 1 |
| 2 |
练习册系列答案
相关题目