题目内容
用数学归纳法证明:
+
+
+…+
>
(n>1,且n∈N*).
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 3n |
| 9 |
| 10 |
分析:先证明n=2时,结论成立;假设n=k(k>1,且k∈N*)时结论成立,利用归纳假设,证明n=k+1时结论成立.
解答:证明:(1)n=2时,左边=
+
+
+
=
>
,不等式成立;
(2)假设n=k(k>1,且k∈N*)时结论成立,即
+
+…+
>
则n=k+1时,左边=
+
+…+
+
+
+
=
+
+…+
+
+
+
-
>
+
+
+
-
=
+
+
>
即n=k+1时结论成立
综上,
+
+
+…+
>
(n>1,且n∈N*).
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 6 |
| 57 |
| 60 |
| 9 |
| 10 |
(2)假设n=k(k>1,且k∈N*)时结论成立,即
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| 3k |
| 9 |
| 10 |
则n=k+1时,左边=
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| 3k |
| 1 |
| 3k+1 |
| 1 |
| 3k+2 |
| 1 |
| 3k+3 |
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| 3k |
| 1 |
| 3k+1 |
| 1 |
| 3k+2 |
| 1 |
| 3k+3 |
| 1 |
| k+1 |
| 9 |
| 10 |
| 1 |
| 3k+1 |
| 1 |
| 3k+2 |
| 1 |
| 3k+3 |
| 1 |
| k+1 |
| 9 |
| 10 |
| 2 |
| (3k+1)(3k+3) |
| 1 |
| (3k+2)(3k+3) |
| 9 |
| 10 |
即n=k+1时结论成立
综上,
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 3n |
| 9 |
| 10 |
点评:本题考查数学归纳法,考查不等式的证明,掌握数学归纳法的证题步骤是关键.
练习册系列答案
相关题目