题目内容
已知角α的终边在直线3x+4y=0上,求sinα,cosα,tanα的值.分析:在角α的终边上任取一点P(4t,-3t)(t≠0),r=|OP|=5|t|,利用三角函数的定义求出sinα,cosα,tanα的值.
解答:解:∵角α的终边在直线3x+4y=0上,
∴在角α的终边上任取一点P(4t,-3t)(t≠0),
则x=4t,y=-3t,r=
=
=5|t|,
当t>0时,r=5t,
sinα=
=
=-
,cosα=
=
=
,tanα=
=
=-
;
当t<0时,r=-5t,sinα=
=
=
,
cosα=
=
=-
,tanα=
=
=-
.
综上可知,t>0时,sinα=-
,cosα=
,tanα=-
;
t<0时,sinα=
,cosα=-
,tanα=-
.
∴在角α的终边上任取一点P(4t,-3t)(t≠0),
则x=4t,y=-3t,r=
| x2+y2 |
| (4t)2+(-3t)2 |
当t>0时,r=5t,
sinα=
| y |
| r |
| -3t |
| 5t |
| 3 |
| 5 |
| x |
| r |
| 4t |
| 5t |
| 4 |
| 5 |
| y |
| x |
| -3t |
| 4t |
| 3 |
| 4 |
当t<0时,r=-5t,sinα=
| y |
| r |
| -3t |
| -5t |
| 3 |
| 5 |
cosα=
| x |
| r |
| 4t |
| -5t |
| 4 |
| 5 |
| y |
| x |
| -3t |
| 4t |
| 3 |
| 4 |
综上可知,t>0时,sinα=-
| 3 |
| 5 |
| 4 |
| 5 |
| 3 |
| 4 |
t<0时,sinα=
| 3 |
| 5 |
| 4 |
| 5 |
| 3 |
| 4 |
点评:本题考查任意角的三角函数的定义,体现了分类讨论的数学思想,属于基础题.
练习册系列答案
相关题目