题目内容
已知a,b,c分别是△ABC的三个内角A,B,C的对边,
=
(1)求A的大小;
(2)当a=
时,求b2+c2的取值范围.
| 2b-c |
| a |
| cosC |
| cosA |
(1)求A的大小;
(2)当a=
| 3 |
(1)△ABC中,
=
,由正弦定理变形得:
=
,
即2sinBcosA=sinAcosC+sinCcosA,
整理得:2sinBcosA=sin(A+C)=sinB,
∵sinB≠0,∴cosA=
,
则A=
;
(2)由正弦定理及a=
,sinA=
得
=
=
=
=2,
得:b=2sinB,c=2sinC,
则b2+c2=4sin2B+4sin2C
=2(1-cos2B+1-cos2C)
=2[2-cos2B-cos2(120°-B)]
=2[2-cos2B-cos(240°-2B)]
=2(2-
cos2B+
sinB)
=4+2sin(2B-30°),
∵0<B<120°,即-30°<2B-30°<210°,
∴-
<sin(2B-30°)≤1,
则3<b2+c2≤6.
| 2b-c |
| a |
| cosC |
| cosA |
| 2sinB-sinC |
| sinA |
| cosC |
| cosA |
即2sinBcosA=sinAcosC+sinCcosA,
整理得:2sinBcosA=sin(A+C)=sinB,
∵sinB≠0,∴cosA=
| 1 |
| 2 |
则A=
| π |
| 3 |
(2)由正弦定理及a=
| 3 |
| ||
| 2 |
| a |
| sinA |
| b |
| sinB |
| c |
| sinC |
| ||||
|
得:b=2sinB,c=2sinC,
则b2+c2=4sin2B+4sin2C
=2(1-cos2B+1-cos2C)
=2[2-cos2B-cos2(120°-B)]
=2[2-cos2B-cos(240°-2B)]
=2(2-
| 1 |
| 2 |
| ||
| 2 |
=4+2sin(2B-30°),
∵0<B<120°,即-30°<2B-30°<210°,
∴-
| 1 |
| 2 |
则3<b2+c2≤6.
练习册系列答案
相关题目