题目内容
在△ABC中,角A、B、C成等差数列,且b=2,则外接圆的半径R=______.
∵在△ABC中,角A、B、C成等差数列,
∴2B=A+C,
∵A+B+C=180°,
∴B=60°,
∵b=2,
∴由正弦定理
=2R得:R=
=
=
.
故答案为:
∴2B=A+C,
∵A+B+C=180°,
∴B=60°,
∵b=2,
∴由正弦定理
| b |
| sinB |
| b |
| 2sinB |
| 2 | ||||
2×
|
2
| ||
| 3 |
故答案为:
2
| ||
| 3 |
练习册系列答案
相关题目