题目内容
A. 0 B. 1 C. 2 D. 4
(06年江西卷理)(12分)
已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值
(1)求a、b的值与函数f(x)的单调区间
(2)若对xÎ〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范围。
若函数f(x)=x3-3bx+b在区间(0,1)内有极小值,则b应满足的条件是 _
(本小题满分12分)已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值.
(1)求a、b的值与函数f(x)的单调区间;
(2)xÎ〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范围.
已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值.
(1)求a、b的值;
(2)若函数f(x)的图象与x轴有3个交点,求c的取值范围。
若函数f(x)=x3-3bx+b在区间(0,1)内有极小值,则b应满足的条件是 ;