题目内容

在△ABC中,角A、B、C的对边分别a、b、c,已知a+b=5,c=
7
,且sin22C+sin2C•sinC+cos2C=1.
(Ⅰ)求角C的大小;
(Ⅱ)求△ABC的面积.
考点:正弦定理,余弦定理
专题:解三角形
分析:(Ⅰ)通过二倍角公式化简已知表达式,求出cosC的值,然后在三角形中求角C的大小;
(Ⅱ)结合(Ⅰ)通过余弦定理,求出ab的值,然后直接求△ABC的面积.求角C的大小.
解答: 解:(Ⅰ)∵sin22C+sin2C•sinC+cos2C=1,
∴4sin2Ccos2C+2sin2CcosC+1-2sin2C=1,
整理得:2cos2C+cosC-1=0,即cosC=
1
2

则C=60°;
(Ⅱ)由余弦定理可知:cosC=
a2+b2-c2
2ab
=
(a+b)2-2ab-c2
2ab
=
1
2

25-2ab-7
2ab
=
1
2
,即ab=6,
∴S△ABC=
1
2
absinC=
3
3
2
点评:此题考查了余弦定理,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网