题目内容
已知数列{Pn}满足:(1)P1=
,P2=
;(2)Pn+2=
Pn+1+
Pn.
(Ⅰ)设bn=Pn+1-Pn,证明数列{bn}是等比数列;
(Ⅱ)求
Pn.
| 2 |
| 3 |
| 7 |
| 9 |
| 2 |
| 3 |
| 1 |
| 3 |
(Ⅰ)设bn=Pn+1-Pn,证明数列{bn}是等比数列;
(Ⅱ)求
| lim |
| n→∞ |
(Ⅰ)bn+1=Pn+2-Pn+1=-
Pn+1+
Pn=-
bn,
又b1=
,
∴数列{bn}是等比数列.
(Ⅱ)由(Ⅰ)知bn=
(-
)n-1=(-
)n+1,
即Pn+1-Pn=bn=(-
)n+1,
∴Pn=P1+(P2-P1)+(P3-P2)+…+(Pn-Pn-1)=
+(-
)2+(-
)3++(-
)n=
+
•(-
)n.
∴
Pn=
[
+
•(-
)n]=
.
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
又b1=
| 1 |
| 9 |
∴数列{bn}是等比数列.
(Ⅱ)由(Ⅰ)知bn=
| 1 |
| 9 |
| 1 |
| 3 |
| 1 |
| 3 |
即Pn+1-Pn=bn=(-
| 1 |
| 3 |
∴Pn=P1+(P2-P1)+(P3-P2)+…+(Pn-Pn-1)=
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 3 |
∴
| lim |
| n→∞ |
| lim |
| n→∞ |
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 3 |
| 3 |
| 4 |
练习册系列答案
相关题目