题目内容

在数列{an}中,a1=2,an+1=3an-2n+1.
(Ⅰ)证明:数列{an-n}是等比数列;
(Ⅱ)求数列{an}的通项公式an
(Ⅲ)求数列{an}的前n项和Sn
(Ⅰ)因为
an+1-(n+1)
an-n
=
3an-2n+1-(n+1)
an-n
=
3an-3n
an-n
=3,
所以数列{an-n}是公比为3的等比数列;
(Ⅱ)由(Ⅰ)得an-n=(2-1)•3n-1=3n-1
则an=3n-1+n;
(Ⅲ)所以数列{an}的前n项和
Sn=(1+5+8+…+3n-1)+(1+2+3+…+n)=
3n+n2+n-1
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网