题目内容

9.以直角坐标系的原点O为极点,X轴的正半轴为极轴,建立坐标系,两个坐标系取相同的单位长度.已知直线L的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=tsina\end{array}\right.$(t为参数,0<a<π),曲线C的极坐标方程为ρsin2θ=4cosθ
(1)求曲线C的直角坐标方程
(2)设直线L与曲线C相交于A,B两点,|AB|=8时,求α的值.

分析 (1)由ρsinθ=y,ρcosθ=x,能求出曲线C的直角坐标方程.
(2)由直线L的参数方程得tanα=$\frac{y}{x-1}$,直线过(1,0),设l的方程为y=k(x-1),代入曲线C:y2=4x,得k2x2-(2k2+4)x+k2=0,由此利用椭圆弦长公式能求出α的值.

解答 解:(1)∵曲线C的极坐标方程为ρsin2θ=4cosθ,
∴ρ2sin2θ=4ρcosθ,
∵ρsinθ=y,ρcosθ=x,
∴曲线C的直角坐标方程为y2=4x.
(2)∵直线L的参数方程$\left\{\begin{array}{l}x=1+tcosα\\ y=tsina\end{array}\right.$(t为参数,0<a<π),
∴tanα=$\frac{y}{x-1}$,∴直线过(1,0),设l的方程为y=k(x-1),
代入曲线C:y2=4x,消去y,得k2x2-(2k2+4)x+k2=0,
设A(x1,y1),B(x2,y2),则${x}_{1}+{x}_{2}=\frac{2{k}^{2}+4}{{k}^{2}}$,x1x2=1,
∵|AB|=8.∴$\sqrt{(1+{k}^{2})[(\frac{2{k}^{2}+4}{{k}^{2}})^{2}-4]}$=8,解得k=±1,
当k=1时,α=45°;当k=-1时,α=135°.
∴α的值为45°或135°.

点评 本题考查曲线的直角坐标方程的求法,考查直线倾斜角的求法,是中档题,解题时要认真审题,注意椭圆弦长公式的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网