题目内容
20.方程$\frac{{x}^{2}}{4-t}$+$\frac{{y}^{2}}{t-1}$=1表示曲线C,给出以下命题:①曲线C不可能为圆;
②若1<t<4,则曲线C为椭圆;
③若曲线C为双曲线,则t<1或t>4;
④若曲线C为焦点在x轴上的椭圆,则1<t<$\frac{5}{2}$.
其中真命题的序号是( )
| A. | ③④ | B. | ②③ | C. | ①④ | D. | ①②③④ |
分析 ①当4-t=t-1>0,即t=$\frac{5}{2}$时,曲线C表示圆;
②若4-t>0,t-1>0且4-t≠t-1,解出即可得出曲线C为椭圆;
③若曲线C为双曲线,则(4-t)(t-1)<0,解出即可判断出;
④若曲线C为焦点在x轴上的椭圆,则4-t>t-1>0.
解答 解:方程$\frac{{x}^{2}}{4-t}$+$\frac{{y}^{2}}{t-1}$=1表示曲线C,以下命题:
①当4-t=t-1>0,即t=$\frac{5}{2}$时,曲线C表示圆,因此不正确;
②若4-t>0,t-1>0且4-t≠t-1,解得1<t<4且t≠$\frac{5}{2}$,则曲线C为椭圆,因此不正确;
③若曲线C为双曲线,则(4-t)(t-1)<0,解得t<1或t>4,正确;
④若曲线C为焦点在x轴上的椭圆,则4-t>t-1>0,解得1<t<$\frac{5}{2}$,正确.
综上可得真命题为:③④.
故选:A.
点评 本题考查了分类讨论的思想方法,考查了椭圆双曲线圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
10.已知F1(-1,0),F2(1,0)是椭圆C1与双曲线C2共同的焦点,椭圆的一个短轴端点为B,直线F1B与双曲线的一条渐近线平行,椭圆C1与双曲线C2的离心率分别为e1,e2,则e1+e2取值范围为( )
| A. | [2,+∞) | B. | [4,+∞) | C. | (4,+∞) | D. | (2,+∞) |
11.已知双曲线与椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$共焦点,它们的离心率之和为$\frac{21}{10}$,则双曲线的方程是( )
| A. | $\frac{x^2}{25}-\frac{y^2}{16}=1$ | B. | $\frac{x^2}{16}-\frac{y^2}{25}=1$ | C. | $\frac{x^2}{5}-\frac{y^2}{4}=1$ | D. | $\frac{x^2}{4}-\frac{y^2}{5}=1$ |