题目内容
设△ABC的内角A,B,C的对边分别为a,b,c,面积为S△ABC,且S△ABC=bccosA
(1)求sin2A+sinAcosA的值(2)若b2=a2+c2-
ac,b=
,求c.
(1)求sin2A+sinAcosA的值(2)若b2=a2+c2-
| 2 |
| 5 |
(1)∵S△ABC=bccosA,且S△ABC=
bcsinA,
∴
bcsinA=bccosA,
∴tanA=2,
则原式=
=
=
;
(2)∵b2=a2+c2-
ac,即a2+c2-b2=
ac,
∴cosB=
=
,又B为三角形的内角,
∴sinB=
=
,
∵tanA=2,bccosA>0,即cosA>0,
∴cosA=
=
,sinA=
=
,
∴sinC=sin(A+B)
=sinAcosB+cosAsinB
=
(sinA+cosA)
=
•
=
,
由正弦定理得:
=
,
∴c=
=3.
| 1 |
| 2 |
∴
| 1 |
| 2 |
∴tanA=2,
则原式=
| sin2A+sinAcosA |
| sin2A+cos2A |
| tan2A+tanA |
| 1+tan2A |
| 6 |
| 5 |
(2)∵b2=a2+c2-
| 2 |
| 2 |
∴cosB=
| a2+c2-b2 |
| 2ac |
| ||
| 2 |
∴sinB=
| 1-cos2B |
| ||
| 2 |
∵tanA=2,bccosA>0,即cosA>0,
∴cosA=
|
| 1 | ||
|
| 1-cos2A |
| 2 | ||
|
∴sinC=sin(A+B)
=sinAcosB+cosAsinB
=
| ||
| 2 |
=
| ||
| 2 |
3
| ||
| 5 |
3
| ||
| 10 |
由正弦定理得:
| b |
| sinB |
| c |
| sinC |
∴c=
| bsinC |
| sinB |
练习册系列答案
相关题目