题目内容

9.如果定义在R上的函数f(x),对任意x1≠x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2(fx1),则称函数为“H函数”,给出下列函数
①f(x)=3x+1      ②f(x)=($\frac{1}{2}$)x+1
③f(x)=x2+1      ④f(x)=$\left\{\begin{array}{l}{-\frac{1}{x},x<-1}\\{{x}^{2}+4x+5,x≥-1}\end{array}\right.$ 
其中是“H函数”的有①④(填序号)

分析 不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)等价为(x1-x2)[f(x1)-f(x2)]>0,即满足条件的函数为单调递增函数,判断函数的单调性即可得到结论.

解答 解:∵对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)≥x1f(x2)+x2f(x1)恒成立,
∴不等式等价为(x1-x2)[f(x1)-f(x2)]≥0恒成立,
即函数f(x)是定义在R上的不减函数(即无递减区间);
①f(x)在R递增,符合题意;
②f(x)在R递减,不合题意;
③f(x)在(-∞,0)递减,在(0,+∞)递增,不合题意;
④f(x)在R递增,符合题意;
故答案为:①④.

点评 本题主要考查函数单调性的应用,将条件转化为函数的单调性的形式是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网