题目内容

求下列各函数的导数:

(1)y=

(2)y=(x+1)(x+2)(x+3);

(3)y=-sin(1-2cos2);

(4)y=+.

(1)-x+3x2-2x-3sinx+x-2cosx.        (2)3x2+12x+11

        (3)cosx        (4)


解析:

(1)∵y==x+x3+

∴y′=(x)′+(x3)′+(x-2sinx)′

=-x+3x2-2x-3sinx+x-2cosx.

(2)方法一  y=(x2+3x+2)(x+3)

=x3+6x2+11x+6,

∴y′=3x2+12x+11.

方法二

y′=[(x+1)(x+2)]′(x+3)+(x+1)(x+2)(x+3)′

=[(x+1)′(x+2)+(x+1)(x+2)′](x+3)+(x+1)(x+2)

=(x+2+x+1)(x+3)+(x+1)(x+2)

=(2x+3)(x+3)+(x+1)(x+2)

=3x2+12x+11.

(3)∵y=-sin(-cos)=sinx,

∴y′=(sinx) ′= (sinx)′=cosx.

(4)y=+==

∴y′=()′==.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网