题目内容
已知R上的不间断函数
满足:①当
时,
恒成立;②对任意的
都有
。又函数
满足:对任意的
,都有
成立,当
时,
。若关于
的不等式
对
恒成立,则
的取值范围( )
| A. | B. |
| C. | D. |
A
因为函数g(x)满足:当x>0时,g’(x)>0恒成立,
且对任意x∈R都有g(x)=g(-x),
则函数g(x)为R上的偶函数且在[0,+∞)上为单调递增函数,
且有g|(x|)=g(x),
所以g[f(x)]≤g(a2-a+2)在R上恒成立,
∴|f(x)|≤|a2-a+2|对x∈∈[-
-2
,
-2
]恒成立,
只要使得定义域内|f(x)|max≤|a2-a+2|min,
由于当x∈[-
,
]时,f(x)=x3-3x,
求导得:f′(x)=3x2-3=3(x+1)(x-1),
该函数过点(-
,0),(0,0),(
,0),
且函数在x=-1处取得极大值f(-1)=2,
在x=1处取得极小值f(1)=-2,
又由于对任意的x∈R都有f(
+x)=-f(x),
∴f(2
+x)=-f(
+x)=f(x)成立,则函数f(x)为周期函数且周期为T=2
,
所以函数f(x)在x∈[-
-2
,
-2
]的最大值为2,所以令2≤|a2-a+2|解得:a≥1或a≤0.
故选A
且对任意x∈R都有g(x)=g(-x),
则函数g(x)为R上的偶函数且在[0,+∞)上为单调递增函数,
且有g|(x|)=g(x),
所以g[f(x)]≤g(a2-a+2)在R上恒成立,
∴|f(x)|≤|a2-a+2|对x∈∈[-
只要使得定义域内|f(x)|max≤|a2-a+2|min,
由于当x∈[-
求导得:f′(x)=3x2-3=3(x+1)(x-1),
该函数过点(-
且函数在x=-1处取得极大值f(-1)=2,
在x=1处取得极小值f(1)=-2,
又由于对任意的x∈R都有f(
∴f(2
所以函数f(x)在x∈[-
故选A
练习册系列答案
相关题目