ÌâÄ¿ÄÚÈÝ

10£®ÒÑÖªÊýÁÐ{an}µÄ¸÷ÏîΪÕýÊý£¬ÆäǰnÏîºÍΪSnÂú×ã${S_n}={£¨\frac{{{a_n}+1}}{2}£©^2}$£¬Éèbn=10-an£¨n¡ÊN£©£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{an}ÊǵȲîÊýÁУ¬²¢Çó{an}µÄͨÏʽ£»
£¨2£©ÉèÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬ÇóTnµÄ×î´óÖµ£®
£¨3£©ÉèÊýÁÐ{bn}µÄͨÏʽΪ${b_n}=\frac{a_n}{{{a_n}+t}}$£¬ÎÊ£ºÊÇ·ñ´æÔÚÕýÕûÊýt£¬Ê¹µÃb1£¬b2£¬bm£¨m¡Ý3£¬m¡ÊN£©³ÉµÈ²îÊýÁУ¿Èô´æÔÚ£¬Çó³ötºÍmµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©µ±n=1ʱ£¬${a_1}={S_1}={£¨\frac{{{a_1}+1}}{2}£©^2}$£¬½âµÃa1=1£®µ±n¡Ý2ʱ£¬an=Sn-Sn-1£¬»¯Îª£¨an+an-1£©£¨an-an-1-2£©=0£¬ÓÉÒÑÖª¿ÉµÃ£ºan-an-1-2=0£¬ÀûÓõȲîÊýÁеÄͨÏʽ¼´¿ÉµÃ³ö£®
£¨2£©bn=10-an=-2n+11£¬¿ÉµÃ{bn}ÊǵȲîÊýÁУ¬ÀûÓÃÇóºÍ¹«Ê½¡¢¶þ´Îº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®
£¨3£©ÓÉ£¨1£©Öª${b_n}=\frac{2n-1}{2n-1+t}$£®ÒªÊ¹b1£¬b2£¬bm³ÉµÈ²îÊýÁУ¬¿ÉµÃ2b2=b1+bm£¬´úÈ뻯¼ò¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©µ±n=1ʱ£¬${a_1}={S_1}={£¨\frac{{{a_1}+1}}{2}£©^2}$£¬¡àa1=1¡­£¨2·Ö£©
µ±n¡Ý2ʱ£¬an=Sn-Sn-1=$£¨\frac{{a}_{n}+1}{2}£©^{2}$-$£¨\frac{{a}_{n-1}+1}{2}£©^{2}$£¬¼´£¨an+an-1£©£¨an-an-1-2£©=0£¬
¡ßÊýÁÐ{an}µÄ¸÷ÏîΪÕýÊý£¬¡àan+an-1£¾0£¬an-an-1-2=0£¬
ËùÒÔ{an}ÊǵȲîÊýÁУ¬¹«²îΪ2£®
¡àan=1+2£¨n-1£©=2n-1£®
£¨2£©bn=10-an=-2n+11£¬b1=9£¬
¡ßbn-bn-1=-2£¬¡à{bn}ÊǵȲîÊýÁС­£¨7·Ö£©
¡à${T_n}=\frac{{n£¨{b_1}+{b_n}£©}}{2}=-{n^2}+10n$£¬µ±n=5ʱ£¬${T_{nmax}}=-{5^2}+10¡Á5=25$¡­£¨10·Ö£©
£¨3£©ÓÉ£¨1£©Öª${b_n}=\frac{2n-1}{2n-1+t}$£®ÒªÊ¹b1£¬b2£¬bm³ÉµÈ²îÊýÁУ¬
¡à2b2=b1+bm£¬¼´$2¡Á\frac{3}{3+t}=\frac{1}{1+t}+\frac{2m-1}{2m-1+t}$£¬¡­£®ÕûÀíµÃ$m=3+\frac{4}{t-1}$£¬¡­1£¨2·Ö£©
ÒòΪm£¬tΪÕýÕûÊý£¬ËùÒÔtÖ»ÄÜÈ¡2£¬3£¬5£®
µ±t=2ʱ£¬m=7£»µ±t=3ʱ£¬m=5£»µ±t=5ʱ£¬m=4£®
¹Ê´æÔÚÕýÕûÊýt£¬Ê¹µÃb1£¬b2£¬bm³ÉµÈ²îÊýÁУ®¡­£¨16·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÊýÁеÝÍÆ¹ØÏµ¡¢µÈ²îÊýÁеÄͨÏʽÓëÇóºÍ¹«Ê½¡¢¶þ´Îº¯ÊýµÄµ¥µ÷ÐÔ£¬·½³ÌµÄ½â·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø