题目内容

已知y=lo
g
(2-ax)
a
是[0,1]上的减函数,则a的取值范围为(  )
A、(0,1)
B、(1,2)
C、(0,2)
D、[2,+∞)
考点:对数函数的单调区间
专题:函数的性质及应用
分析:本题必须保证:①使loga(2-ax)有意义,即a>0且a≠1,2-ax>0.②使loga(2-ax)在[0,1]上是x的减函数.由于所给函数可分解为y=logau,u=2-ax,其中u=2-ax在a>0时为减函数,所以必须a>1;③[0,1]必须是y=loga(2-ax)定义域的子集.
解答: 解:∵f(x)=loga(2-ax)在[0,1]上是x的减函数,
∴f(0)>f(1),
即loga2>loga(2-a).
a>1
2-a>0

∴1<a<2.
故答案为:C.
点评:本题综合了多个知识点,需要概念清楚,推理正确.(1)复合函数的单调性;(2)函数定义域,对数真数大于零,底数大于0,不等于1.本题难度不大,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网