题目内容
若-4<x<1,则
的最小值为( )
| x2-2x+2 |
| 2x-2 |
分析:变形可得原式=
+
=-[-
+
],由条件,结合基本不等式可得.
| x-1 |
| 2 |
| 1 |
| 2(x-1) |
| x-1 |
| 2 |
| 1 |
| -2(x-1) |
解答:解:变形可得
=
=
=
+
∵-4<x<1,∴-5<x-1<0,
故原式=
+
=-[-
+
]≤-2
=-1
当且仅当-
=
,即x=0时,取等号,
故选C
| x2-2x+2 |
| 2x-2 |
| x2-2x+1+1 |
| 2(x-1) |
| (x-1)2+1 |
| 2(x-1) |
| x-1 |
| 2 |
| 1 |
| 2(x-1) |
∵-4<x<1,∴-5<x-1<0,
故原式=
| x-1 |
| 2 |
| 1 |
| 2(x-1) |
| x-1 |
| 2 |
| 1 |
| -2(x-1) |
-
|
当且仅当-
| x-1 |
| 2 |
| 1 |
| -2(x-1) |
故选C
点评:本题考查基本不等式的应用,正确变形为能用基本不等式的形式是解决问题的关键,属基础题.
练习册系列答案
相关题目