题目内容
设函数f(x)=
,则f(f(-2))=( )
|
| A、-2 | ||
B、
| ||
| C、-4 | ||
| D、不确定 |
考点:函数的值
专题:函数的性质及应用
分析:利用分段函数性质求解.
解答:
解:∵f(x)=
,
∴f(-2)=2-2=
,
f(f(-2))=f(
)=log2
=-2.
故选:A.
|
∴f(-2)=2-2=
| 1 |
| 4 |
f(f(-2))=f(
| 1 |
| 4 |
| 1 |
| 4 |
故选:A.
点评:本题考查函数值的求法,解题时要认真审题,注意分段函数性质的合理运用.
练习册系列答案
相关题目
已知方程
x3-
x2-2x-m=0有三个不等实根,则m的取值范围是( )
| 1 |
| 3 |
| 1 |
| 2 |
A、(-
| ||||
B、(-
| ||||
| C、(7,20) | ||||
D、(-
|
函数f(x)=lgx+
的定义域为( )
| 4-x |
| A、[0,4] |
| B、(0,4] |
| C、[1,4] |
| D、[1,4) |
在y轴上的截距是2,且与x轴平行的直线方程为( )
| A、y=2 | B、y=-2 |
| C、x=2 | D、y=2或y=-2 |
已知M(2,2)和N(5,-2),点P在x轴上,∠MPN=90°,则点P的坐标为( )
| A、(1,6) |
| B、(1,0) |
| C、(6,0) |
| D、(1,0)或(6,0) |
如果关于x的不等式ax2+bx-2<0的解集是{x|x<-2或x>-1},那么关于x的不等式2x2+bx-a<0的解集为( )
A、(-1,
| ||
B、(-1,-
| ||
C、(
| ||
D、(-
|
已知扇形的半径为2cm,圆心角为2弧度,则该扇形的面积为( )
| A、4cm2 |
| B、6cm2 |
| C、8cm2 |
| D、16cm2 |