题目内容
方程在区间内的解为 .
在中,已知.
(1)求角的大小;
(2)若,且的面积为,求的值.
设函数.
(1)若,求函数的单调区间;
(2)过坐标原点作曲线的切线,证明:切点的横坐标为1.
已知菱形的边长为,,则( )
A. B. C. D.
已知函数的最小正周期为.
(1)求函数的表达式并求在区间上的最小值;
(2)在中,分别为角所对的边,且,,求角的大小.
设是正数组成的等比数列,公比,且,则( )
已知函数.
(1)解不等式;
(2)若存在实数,使得,求实数的取值范围.
公差不为0的等差数列的部分项构成等比数列,且,,,则为( )
A.20 B.22 C.24 D.28
设奇函数在上是增函数,且,若函数对所有的都成立,当时,则的取值范围是( )
A. B.
C.或或 D.或或